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We develop and investigate numerically a thermodynamically consistent model of two-
dimensional multicomponent vesicles in an incompressible viscous fluid. The model is
derived using an energy variation approach that accounts for different lipid surface phases,
the excess energy (line energy) associated with surface phase domain boundaries, bending
energy, spontaneous curvature, local inextensibility and fluid flow via the Stokes equations.
The equations are high-order (fourth order) nonlinear and nonlocal due to incompressibil-
ity of the fluid and the local inextensibility of the vesicle membrane. To solve the equations
numerically, we develop a nonstiff, pseudo-spectral boundary integral method that relies
on an analysis of the equations at small scales. The algorithm is closely related to that
developed very recently by Veerapaneni et al. [81] for homogeneous vesicles although
we use a different and more efficient time stepping algorithm and a reformulation of the
inextensibility equation. We present simulations of multicomponent vesicles in an initially
quiescent fluid and investigate the effect of varying the average surface concentration of an
initially unstable mixture of lipid phases. The phases then redistribute and alter the mor-
phology of the vesicle and its dynamics. When an applied shear is introduced, an initially
elliptical vesicle tank-treads and attains a steady shape and surface phase distribution. A
sufficiently elongated vesicle tumbles and the presence of different surface phases with
different bending stiffnesses and spontaneous curvatures yields a complex evolution of
the vesicle morphology as the vesicle bends in regions where the bending stiffness and
spontaneous curvature are small.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Biological membranes play an active and critical role in cell functions such as solute transport, cell locomotion, adhesion,
signal transduction, etc. (e.g. see [1]). In addition, cells frequently use small membrane-bound carriers (vesicles) to transport
proteins and molecules. The basic structural component of all biological membranes are lipid bilayers. Multicomponent ves-
icles are hollow, closed biomembranes with a lipid bilayer membrane containing different types of lipids and cholesterol.
Vesicles serve as important, but simplified models of more complex cell-membranes [67]. Vesicle membranes are liquid-like,
resist bending and are inextensible, e.g. [51,67]. Recent experiments on giant unilamellar vesicles demonstrate that there
exists a rich variety of behavior of multicomponent vesicles. Spinodal decomposition into distinct surface domains (e.g. li-
quid-ordered, liquid-disordered) known as rafts (or domains), raft coarsening, viscous fingering, vesicle budding, fission and
. All rights reserved.
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fusion are all observed with concomitant changes in membrane morphology. See, for example, [79,80,8,14,9,77,
18,22,84,68,5]. The resulting rafts may play an important role in regulating protein activity because of the existence of
raft-resident proteins such as hemagglutinin which is an envelope protein of influenza [29].

While there have been many theoretical and numerical studies of homogeneous vesicles using discrete and continuum
models (e.g. see the reviews [59,51,53,62,61]), the recent papers [16,17,15,12,11,10,35,36,42,6,81,72,63] (and the references
therein), there are far fewer studies of inhomogeneous systems although there has been an increasing focus on the inhomo-
geneous vesicles in the past 10 years.

Discrete approaches, such as Monte Carlo methods, dissipative particle dynamics and molecular dynamics, have been
used to simulate the dynamics of phase separation and domain formation, vesicle fission and fusion (e.g. see
[46,48,69,82,60,34,49,21,57,25,70,20]). However, the length and time scales achieved in such simulations are significantly
limited by computational cost.

Continuum methods provide a good modeling alternative to reach larger length and time scales. Continuum models are
also easier to analyze and parametrize. The continuum approach is based on the generalized bending energy proposed by
Helfrich [28] supplemented by a line energy associated with surface phase domain boundaries (e.g. Lipowsky [52], Seifert
[66] and Jülicher and Lipowsky [40,39]). Until recently, studies of multicomponent vesicles have been limited to equilibrium
investigations (e.g. see [4,43,76,66,26,39,23,24,27,7,68,71]) or dynamical simulations limited to small deformations or spe-
cial shapes (e.g. see [75,37,58,55,19]). Very recently, phase-field models developed for single-component vesicles (e.g. see
[16,17,15,12,11,10,35,36,63]) have been extended to the multicomponent case [13,83,56]. In the phase-field approach, the
vesicle membrane is given a finite thickness and the governing Helfrich equations are modeled with diffuse interface coun-
terparts. While this approach is capable of simulating complex dynamics including vesicle adhesion, fusion and fission, the
Helfrich equations are not solved directly and the local inextensibility constraints are typically replaced with global con-
straints or simplified approximations.

To our knowledge, there are no sharp interface models where the dynamics of multicomponent inextensible membranes
in a viscous fluid are simulated directly. While the sharp interface approach cannot simulate vesicle fusion and fission with-
out ad hoc cut-and-connect techniques, this method is valuable nevertheless because it provides highly accurate solutions
that can be used to validate other more general approaches (e.g. phase-field) and the solutions provided by the sharp inter-
face method are of intrinsic interest. In fact, there have been few studies using sharp interface models of inextensible homo-
geneous vesicles in a viscous fluid [44,85,74,81] because of the difficulties involved in solving the high-order nonlinear
systems of equations. The stiffness introduced by bending forces posed a formidable challenge that was only recently over-
come in two dimensions by Veerapaneni et al. [81] who developed a nonstiff algorithm by extracting dominant contributions
to the equations at small spatial scales, following Hou et al. [30], Kropinski [45], Tornberg and Shelley [78] and Hou and Shi
[32].

In this paper, we develop and investigate numerically a thermodynamically consistent model of two-dimensional multi-
component vesicles in an incompressible viscous fluid. The model is derived using an energy variation approach that ac-
counts for different surface phases, the excess energy (line energy) associated with surface phase domain boundaries,
bending energy, spontaneous curvature, local inextensibility and fluid flow via the Stokes equations. The equations are
high-order (fourth order) nonlinear and nonlocal due to incompressibility of the fluid and the local inextensibility of the ves-
icle membrane. To solve the equations numerically, we use a boundary integral representation of the fluid velocity and de-
velop a nonstiff, pseudo-spectral boundary integral method to solve the coupled system that relies on an analysis of the
equations at small scales. The algorithm is closely related to that developed very recently by Veerapaneni et al. [81] for
homogeneous vesicles although we use a different and more efficient time stepping algorithm and a reformulation of the
inextensibility equation. We present simulations of multicomponent vesicles in an initially quiescent fluid and investigate
the effect of varying the average surface concentration of an initially unstable mixture of lipid phases. The phases then redis-
tribute and alter the morphology of the vesicle and its dynamics. When an applied shear is introduced, an initially elliptical
vesicle tank-treads and attains a steady shape and surface phase distribution. A sufficiently elongated vesicle tumbles and
the presence of different surface phases with different bending stiffnesses and spontaneous curvatures yields a complex evo-
lution of the vesicle morphology as the vesicle bends in regions where the bending stiffness and spontaneous curvature are
small.

The rest of the paper is organized as follows: in Section 2, we present the boundary integral formulation of two-dimen-
sional Stokes flow. In Section 3, the equations governing the dynamics of the inextensible, multicomponent vesicle and sur-
face phases are derived. In Section 4, the numerical method is presented. Numerical results are given in Section 6.
Conclusions are drawn and future work is discussed in Section 7.
2. Two-dimensional membrane

2.1. 2D model

Let X = X(s, t) = (x(s, t), y(s, t)) denote the position of a membrane bounding a vesicle as a function of arclength s and time t.
The membrane evolution is given by
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dX
dt
¼ Vnþ Ts; ð1Þ
where V is the outward normal velocity, n is the outward normal vector, T is the tangential velocity and s is the tangent vec-
tor. The velocity is determined via the solution of the fluid flow equations. We introduce the following nondimensional
variables:
X0 ¼ X
l
; t0 ¼ t

s
; u0 ¼ s

l
u;
where l is a characteristic length of the membrane and s ¼ m2l3
=�b is the characteristic time, where m2 is the viscosity of the

matrix fluid exterior to the vesicle and �b is a characteristic bending stiffness. We also introduce another parameter D known
as the reduced surface area: D = L/R � 2p, where L is the surface area (total length in 2D) and R is the radius of the equivalent
circle (circle with the same enclosed area as the vesicle). Note that D = 0 for a circle. This parameter has been used to classify
vesicle shapes and in particular the transition to tumbling under an applied shear flow [41]. Hereafter, we drop the prime
notation and present only the nondimensional equations.

Define the stress tensor
Pi ¼ �piIþ miDi; Di ¼ rui þruT
i

� �
; ð2Þ
where pi is the pressure, with i = 1, 2 denoting the interior and exterior fluids, mi are the nondimensional viscosities (e.g.
m2 = 1 and m1 is the viscosity ratio), Di is the deformation tensor and ui is the velocity.

We will assume that the length and velocity scales are small so that Stokes flow governs the motion of the fluid
r � Pi ¼ 0; r � ui ¼ 0; ð3Þ
where a velocity u = u1 may be imposed in the far-field. Across the membrane, a stress jump condition holds
[P � n]R � (P � n)1 � (P � n)2 is given by
½P � n�R ¼ �F; ð4Þ
where the stress F is obtained from energy variation and thermodynamic consistency (see Section 3.4). The velocity is as-
sumed to be continuous across the membrane:
½u�R ¼ 0: ð5Þ
In the remainder of the paper, we assume the viscosities of the fluids interior and exterior to the vesicle are matched:
m1 = m2 = 1. An analysis of the effect of viscosity contrast is currently under study. Defining the stress componentwise to
be F(s, t) = (f1, f2), the velocity u = (u1,u2) of the vesicle membrane is given by the boundary integral formulae (e.g. [61])
u1 ¼
1

4p

Z
R
� log rf1ðs0Þ þ f1

r2
1

r2 þ f2
r1r2

r2

� �
ds0 þ u1;1; ð6Þ

u2 ¼
1

4p

Z
R
� log rf2ðs0Þ þ f2

r2
2

r2 þ f1
r1r2

r2

� �
ds0 þ u1;2; ð7Þ
where r = jX(s) � X(s
0
)j, r1 = x(s) � x(s

0
), r2 = y(s) � y(s

0
) and u1 = (u1,1, u1,2) is the far-field velocity. Next, we need to deter-

mine a constitutive relation for the stress F.

3. Governing equations

3.1. Mathematical preliminaries

Let a denote a parametrization of the membrane that bounds the vesicle (0 6 a < 2p) and s = (xa,ya)/sa where
sa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
a þ y2

a

p
. In the above, and in the remainder of the paper, subscripts denote partial derivatives. The outward normal

vector is then n = (ya, � xa)/sa. Introducing the tangent angle h = tan�1 ya/xa, the tangent and normal vectors are s = (cosh,
sinh) and n = (sinh, � cosh). Further, the total curvature is j = ha/sa = hs, where s is arclength. The Frenet formulas give ns = js
and ss = � jn. Using these relations, we may derive the following dynamical equations for the tangent angle h, the arclength
variation sa and the total curvature j:
ht ¼ �Vs þ jT; sat ¼ ðTs þ jVÞsa ð8Þ
and
jt ¼ �ð@2
s þ j2ÞV þ Tjs: ð9Þ
3.2. Energy variation

A thermodynamically consistent constitutive relation for the stress F is determined by requiring that the dynamics of the
membrane decreases the total membrane free energy EM = Eb + ET. Here, Eb is the normal bending energy and ET is the excess
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(line) energy associated with the surface phase (e.g. ordered/disordered) domain boundaries. For isothermal systems (which
we consider here) a decreasing free energy is equivalent to an increasing entropy since the free energy is the total energy
minus the temperature times the entropy [47]. The energies are given as follows.

Let u be the concentration of one of the lipid phases (e.g. disordered phase). Then the normal bending energy is given by
Eb ¼ 1
2

Z
R

bðuÞðj� �jðuÞÞ2dR; ð10Þ
where b is the nondimensional normal bending stiffness, j is the total curvature and �j is the spontaneous curvature. The line
energy ET is
ET ¼ a
�

Z
R

f ðuÞ þ �
2

2
rRuj j2

� �
dR; ð11Þ
where f is a double-well potential, e.g f ðuÞ ¼ 1
4 u2ð1� uÞ2; a is a nondimensional parameter (line tension scaled by a charac-

teristic bending stiffness �b),rR = (I � nn)r is the surface gradient, and � is a nondimensional small scaling parameter where
the scaling is chosen such that as �? 0, ET converges to a finite constant times a. In 3D, this constant is proportional to the
perimeter of the surface domain boundaries.

Next, we consider the variational derivatives of each energy. We do this by taking the time derivative which is equivalent
to varying u and the membrane R simultaneously. Taking the time derivative of Eqs. (11), (10), using Eqs. (8), (9), integrating
by parts and using periodicity (since R is assumed to be a closed curve) we get:
_ET ¼ a
�

Z
R
ðut � TusÞðf 0ðuÞ � �2ussÞdsþ a

�

Z
R

Vjðf ðuÞ � �
2

2
u2

s Þds ð12Þ
and
_Eb ¼
Z

R
ðut � TusÞ

b0ðuÞ
2

j� �jð Þ2 � bðuÞ j� �jð Þ @
�j
@u
ðu; sÞ

� �
dsþ

Z
R

V �ðbðuÞðj� �jÞÞss �
bðuÞ

2
j j2 � �j2� �� �

ds;
where the overdots denote time derivatives and the primes denote derivatives with respect to u. Combining Eqs. (12) and
(13), and defining the variational derivatives,
dEM

du
¼ a
�

f 0ðuÞ � �2uss
� �

þ b0ðuÞ
2

j� �jð Þ2 � bðuÞ j� �jð Þ @
�j
@u

; ð13Þ

dEM

dRn ¼ � bðuÞ j� �jð Þð Þss þ
bðuÞ

2
j j2 � �j2� �

� a
�
j f ðuÞ � �

2

2
u2

s

� �� �
; ð14Þ
we get
_EM ¼
Z

R
ut

dEM

du
dsþ

Z
R

V
dEM

dRn ds�
Z

R
Tus

dEM

du
ds: ð15Þ
To make further progress, we need to consider mass conservation of the surface phases.

3.3. Mass conservation

In the absence of reactions or adsorption/desorption, the total amount of lipid phases should remain unchanged. This
means that the mass
M ¼
Z

R
uds ð16Þ
should be invariant in time, i.e. _M ¼ 0. Defining MC ¼
R

C uds then _MC ¼ JjC, where C is any portion of R, J is the mass flux and
JjC is the net mass flux into C. Taking the time derivative, we get
_MC ¼
Z

C
ut þ u Ts þ jVð Þð Þds: ð17Þ
Thus, local mass conservation implies that
ut þ uðTs þ jVÞ ¼ Js; ð18Þ
where the mass flux J is determined below to ensure energy dissipation (thermodynamic consistency). Using Eq. (18) in Eq.
(15) gives
_EM ¼
Z

R
Js � uðTs þ jVÞð Þ dEM

du
dsþ

Z
R

V
dEM

dRn ds�
Z

R
Tus

dEM

du
ds: ð19Þ
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3.4. Local inextensibility

Now we account for the local inextensibility of the membrane. That is, the membrane is not allowed to stretch. Conse-
quently, the arclength parametrization should be time independent, sa(a, t) = sa(a,0), which implies
Ts þ jV ¼ 0: ð20Þ
Note that an alternate form of Eq. (20) is s � us = 0. Following previous work, we pose this constraint via a Lagrange multiplier
KLL(a, t). Hence, we append the membrane energy considered earlier with a null Lagrangian ELL, where
ELL ¼
Z

R
KLL saða; tÞ � saða;0Þð Þda: ð21Þ
Note that KLL can also be interpreted as a tensile stress introduced to enforce inextensibility. Taking the time derivative, we
get
_ELL ¼
Z

R
KLL

t sa � saða;0Þð Þdaþ
Z

R
KLL Ts þ jVð Þds: ð22Þ
Putting everything together, and assuming that KLL is chosen such that Ts = �jV, gives
_EM ¼ _ET þ _Eb � _ELL ¼
Z

R
Js

dEM

du
dsþ

Z
R

V
dEM

dRn �KLLj

 !
dsþ

Z
R

T KLL
s � us

dEM

du

 !
ds: ð23Þ
Note that local inextensibility makes Eq. (18) become
ut ¼ Js: ð24Þ
3.5. Constitutive relations

We are now in a position to pose thermodynamically consistent constitutive relations for the flux J and the stress F.
Assuming that each term in Eq. (23) is dissipative, we pose the following consitutive relations for the J and F:
J ¼ 1
Pe

dEM

du

 !
s

; ð25Þ
where Pe is a nondimensional Peclet number, and
F ¼ � dEM

dRn �KLLj

 !
n� KLL

s � us
dEM

du

 !
s: ð26Þ
A calculation shows that the stress F can be written as
F ¼ bðuÞ j� �jð Þnð Þss �
1
2

bðuÞ j� �jð Þ 3jþ �jð Þsð Þs þ
a
�

f ðuÞ � �
2

2
u2

s

� �
s

� �
s

� KLLs
� �

s: ð27Þ
This gives the jump in normal stress:
Pn½ �R ¼ � bðuÞ j� �jð Þnð Þss þ
1
2

bðuÞ j� �jð Þ 3jþ �jð Þsð Þs �
a
�

f ðuÞ � �
2

2
u2

s

� �
s

� �
s

þ KLLs
� �

s; ð28Þ
which shows that the bending and surface phase evolution induce zero total force and torque on the system. With these
choices, we obtain the dissipation formula:
_EM ¼ � 1
Pe

Z
R

dEM

du

 !
s

 !2

ds� 1
2

Z
R

D : Dds; ð29Þ
where J ¼ 1
Pe

dEM

du

� �
s

and D = (ru +ruT).

3.6. The Lagrange multiplier KLL

To close the system of equations governing the membrane evolution, the local Lagrange multiplier KLL is chosen such that
ðu � sÞs ¼ �jðu � nÞ; ð30Þ
where u � s and u � n are the tangential and normal components of the Stokes velocity on the membrane and thus these
velocity components are nonlocal linear functionals of KLL through the stress F. This system, which on the discrete level
is nonsymmetric, can be solved using an iterative solver such as GMRES [65]. Each iteration requires a solution of the Stokes
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equations. An efficient preconditioner was recently developed by Veerapaneni et al. [81] using an analysis of the Stokes inte-
gral operators at small spatial scales (small scale decomposition). While we take that approach here (see Section 4), we fur-
ther reformulate Eq. (30) to obtain an even more efficient solver.

On the membrane, we decompose the Stokes velocity u as
u ¼ v þ ~u; ð31Þ
where v is a length conserving velocity field which is derived using a global Lagrange multiplier KGL that preserves the over-
all length of the membrane. The velocity v is easy to compute (no iteration is required) but suffers from the fact that it is not
locally inextensible. Thus, the velocity ~u is introduced to correct this. Numerically, we find that ~u tends to be small which
accelerates the convergence of the iterative solver. We now show how v is obtained.

To begin, we decompose the velocity v as
v ¼ vu þKGLw; ð32Þ
where vu ¼ vu
1jR ¼ vu

2jR is the solution of the unconstrained Stokes equation:
r � Pu
i ¼ 0; Pu

i ¼ �pu
i Iþ Du

i ; Du
i ¼ rvu

i þrvu
i

T
� �

;

r � vu
i ¼ 0;

½Pun�R ¼
dEM

dRn n� us
dEM

du
s; ½vu�R ¼ 0

ð33Þ
and w = w1jR = w2jR satisfies
r � Pw
i ¼ 0; Pw

i ¼ �pw
i Iþ Dw

i ; Dw
i ¼ rwi þrwT

i

� �
;

r �wi ¼ 0;
Pwn½ �R ¼ �jn; ½w�R ¼ 0:

ð34Þ
Further, KGL is chosen such that
Z
R
jv � nds ¼ 0; ð35Þ
so that the velocity field v is length conserving. Rewriting Eq. (35) using the decomposition of v from Eq. (32), we get
Z
R
jðvu þKGLwÞ � nds ¼ 0; ð36Þ
which implies that
KGL ¼ �
R

R jvu � ndsR
R jw � nds

: ð37Þ
To ensure local inextensibility, we use the correction ~u which satisfies:
r � ~Pi ¼ 0; ~Pi ¼ �~piIþ eDi; ~Di ¼ r~ui þr~uT
i

� �
; ð38Þ

r � ~ui ¼ 0;ePn
h i

R
¼ eKs
� �

s
; ~u½ �R ¼ 0; ð39Þ
where eKða; tÞ ¼ KLLða; tÞ �KGLðtÞ. To find eKða; tÞ, we rewrite Eq. (30) as
~u � sð Þs þ j~u � n ¼ � v � sð Þs þ jv � n
� �

: ð40Þ
Thus, Eqs. (38)–(40) comprise the linear nonlocal system for eKða; tÞ that now needs to be solved (e.g. by iteration). This is
done using the small scale decomposition described in the next section, following [81]. While this system has a similar form
as the original system, the reformulated system has the advantage that the only external forcing is due to the local stretching
present in the length conserving velocity v through the right hand side of Eq. (40). This tends to reduce the number of iter-
ations required to solve the system.

We remark that there exists at least one other inextensible velocity field. This is seen as follows. Since the mean of jv � n
is equal to zero (by choice of KGL), it is possible to solve (v � s)s + jv � n = 0 by introducing an appropriate tangential velocity f.
That is, replace Eq. (32) by
v ¼ vu þKGLwþ fs; ð41Þ
where f is chosen so that the velocity field v is actually locally inextensible:
fs ¼ � vu þKGLw
� �

� s
� �

s
� j vu þKGLw

� �
� n: ð42Þ
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Integrating this equation in s gives f. Although v is an inextensible velocity field, it is not generated by a single Lagrange mul-
tiplier. This is seen as follows. Given the velocity fs, one may solve Eqs. (6) and (7) for the corresponding stress ff ¼ ðf f

1 ; f
f
2Þ;

this is a system of first kind Fredholm equations.1 Doing this, one observes that ff – (bs)s for some b which would be required
in order to have a single Lagrange multiplier description. Nevertheless the velocity in Eq. (41) may be used to reformulate the
original system for KLL instead of the velocity in Eq. (32) but ultimately both approaches require solving Eq. (40).

4. Numerical method

4.1. The small scale decomposition

The small scale decomposition(SSD) extracts the dominant part of the equations at small spatial scales [30,31]. In the con-
text of Stokes flows, this was first performed in [45] and later in [32] for immersed interface method and in [81] in the con-
text of the dynamics of inextensible, homogeneous vesicles. Ref. [81] is most relevant to our work here although unlike [81]
we follow [30] and use the SSD to develop an explicit, nonstiff time integration algorithm.

In Eqs. (6) and (7), the only singularity in the integrand comes from the logarithmic kernel. This can be analyzed as
follows:
1 Act
be foun
log jrj ¼ log 2 sin
a� a0

2

� �				 				þ log
jrj

2 sin a�a0
2

� �		 		 ; ð43Þ
where the second term in Eq. (43) is smooth. For a � a
0
, we have,
jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxsðaÞÞ � xðsða0ÞÞ2 þ yðsðaÞÞ � yðsða0ÞÞ2

q
¼ saja� a0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ O a� a0ð Þ

p
¼ saja� a0j 1þ Oða� a0Þð Þ ð44Þ
where O(a � a
0
) denotes a smooth function that vanishes as a

0
? a [30]. Thus, jrj= 2 sinða�a0

2 Þ
		 		� �

is a smooth function.
Analyzing Eqs. (6) and (7) at small spatial scales, we obtain [45,32,81]:
uða; tÞ � �
�sa

4p

Z 2p

0
log 2 sin

a� a0

2

� �				 				� �
Fða0; tÞda0; ð45Þ
where the notation f � g means that f � g is a smoothing operator, e.g. an integral operator with a smooth kernel. In addition,
�sa ¼ sa is constant in space and time because of inextensibility.

Lemma. Let g(a) be a smooth function and define the integral operator
L½g�ðaÞ ¼ 1
p

Z 2p

0
log 2 sin

a� a0

2

� �				 				� �
gða0Þda0: ð46Þ
Then the symbol of L is L̂ ¼ �1=jkj, where k is the Fourier wavenumber. Therefore, L̂½g�ðkÞ ¼ �ĝðkÞ=jkj, for k – 0. For k = 0, the
symbol is equal to 0. The proof of this lemma can be found in [38,81], for example.

Next, consider the small scale decomposition of the normal V = u(a, t) � n(a, t) tangential T = u(a, t) � s(a, t) velocities that
arise from the Stokes flow:
Vða; tÞ � �
�sa

4p

Z 2p

0
log 2 sin

a� a0

2

� �				 				� �
Fða0; tÞ � nða0; tÞda0; ð47Þ

Tða; tÞ � �
�sa

4p

Z 2p

0
log 2 sin

a� a0

2

� �				 				� �
Fða0; tÞ � sða0; tÞda0: ð48Þ
Further, from Eq. (27)
F � n � bjss þKLLj ¼ b
�s3
a
haaa þ

KLL

�sa
ha; ð49Þ

F � s � �KLL
s ¼ �

1
�sa

KLL
a : ð50Þ
Plugging Eqs. (49) and (50) into Eqs. (47) and (48), we obtain
Vða; tÞ � � b
4�s2

a
L½haaa�ða; tÞ �

ha

4
L½KLL�; ð51Þ

Tða; tÞ � 1
4
L½KLL

a �: ð52Þ
ually this system has a nullspace consisting of functions of the form f = cn where c is a constant. A unique solution perpendicular to this nullspace may
d.
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Next, we use the SSD to design an efficient, nonstiff explicit time integration scheme and an efficient preconditioner for the
local Lagrange multiplier.

4.2. Numerical scheme

4.2.1. Vesicle evolution
Following [30], we use the SSD to rewrite Eq. (8) as
ht ¼
�b

4�s3
a
@aL½haaa�ða; tÞ þ N1ða; tÞ; ð53Þ
where we have absorbed the KLL contributions into N1 which is given by
N1ða; tÞ ¼ �
Va

�sa
þ jTða; tÞ �

�b
4�s3

a
@aL½haaa�ða; tÞ: ð54Þ
In the equations above, �b is constant and we find that taking �b ¼max bðuÞ works well in practice. Taking the Fourier trans-
form of Eq. (53), we get
ĥtðk; tÞ ¼ �
�b

4�s3
a
jkj3ĥðk; tÞ þ N̂1ðk; tÞ: ð55Þ
Following [30], we discretize Eq. (55) using the second-order accurate linear propagator method:
ĥnþ1ðkÞ ¼ ekðtn; tnþ1ÞĥnðkÞ þ Dt
2

3ekðtn; tnþ1ÞN̂n
1ðkÞ � ekðtn�1; tnþ1ÞN̂n�1

1

� �
; ð56Þ
where
ekðt1; t2Þ ¼ exp �
�b
4
jkj3

Z t2

t1

dt0
�s3
aðt0Þ

 !
: ð57Þ
We use the trapezoidal rule to approximate
Z tnþ1

tn

dt0

�saðt0Þ3
� Dt

2
1

�sn
a

� �3 þ
1

�snþ1
a

� �3

 !
; ð58Þ

Z tnþ1

tn�1

dt0

�saðt0Þ3
� Dt

1

2 �sn�1
a

� �3 þ
1

�sn
a

� �3 þ
1

2 �snþ1
a

� �3

 !
: ð59Þ
The arclength �saðtÞ can be calculated using the Adams–Bashforth method:
�snþ1
a ¼ �sn

a þ
Dt
2

3Mn �Mn�1
� �

; ð60Þ
where
M ¼ 1
2p

Z 2p

0
ha0Vða0; tÞda0: ð61Þ
To reconstruct the membrane interface (x(a, tn+1), y(a, tn+1)) from the updated hn+1(a) and �snþ1
a , we first update a reference

point (x(0, tn+1), y(0, tn+1)). This is done by using a second-order explicit Adams–Bashforth method. Once we update the ref-
erence point, we obtain the configuration of the interface from the hn+1(a) and �snþ1

a by [30]
xða; tnþ1Þ ¼ xð0; tnþ1Þ þ �snþ1
a

Z a

0
cos hnþ1ða0Þ

� �
da0 � a

2p

Z 2p

0
cos hnþ1ða0Þ

� �
da0

� �
;

yða; tnþ1Þ ¼ yð0; tnþ1Þ þ �snþ1
a

Z a

0
sinðhnþ1ða0ÞÞda0 � a

2p

Z 2p

0
sin hnþ1ða0Þ
� �

da0
� �

;

where the integration is performed using the discrete Fourier transform.
Note that the linear propagator and Adams-Bashforth methods require two previous time steps. At the first time step to

compute h1, we replace the second-order linear propagator with a first-order linear propagator of a similar form. For �s1
a, we

use the explicit Euler method.
To calculate the Stokes boundary integrals in Eqs. (6) and (7) we use the trapezoidal rule for the integrals with smooth

integrands. To calculate the integral with the logarithmic integrand, we follow the approach in [38] and use the SSD and the
lemma to obtain a spectrally accurate discretization using the discrete Fourier transform. Finally, following [30], all deriva-
tives in the membrane, concentration and local Lagrange multiplier equations are performed using the discrete Fourier
transform. A high-order (25th order) Fourier smoothing is used to control aliasing errors.
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4.2.2. The inextensibility equations
We solve the integro-differential inextensibility Eq. (40) for eK using GMRES with a preconditioner derived from the SSD

(see also [81]). From the SSD, we obtain
~u � sð Þs þ j~u � n � 1
4�sa

@aL½eKa� �
h2
a

4�sa
L½eK�: ð62Þ
Replacing ha by a characteristic value �ha, one may define the operator
A½eK� ¼ 1
4�sa

@aL½eKa� �
�h2
a

4�sa
L½eK�; ð63Þ
which can be inverted in Fourier space using the symbol:
Â�1 ¼ � 1
jkj

1
4�sa
�

�h2
a

4�sa

1

jkj2

 !�1

: ð64Þ
Interestingly, using A�1 as the preconditioner, we found that the best results are obtained by taking �ha ¼ 0.

4.2.3. Lipid phase evolution
Using the small scale decomposition for the diffusion flux J
J � � a�
Pe�s3

a
uaaa; ð65Þ
we may rewrite Eq. (24) as:
ut ¼ �
a�

Pe�s4
a

uaaaa þ N2ða; tÞ; ð66Þ
where
N2ða; tÞ ¼
1
Pe

dEM

du

 !
ss

þ a�
�s4
a

uaaaa

 !
: ð67Þ
Taking the Fourier transform of Eq. (66) to get
ûtðk; tÞ ¼ �
a�

Pe�s4
a
jkj4ûðk; tÞ þ N̂2ðk; tÞ; ð68Þ
we can use an analogous linear propagator method to perform the time discretization:
ûnþ1ðkÞ ¼ gkðtn; tnþ1ÞûnðkÞ þ Dt
2

3gkðtn; tnþ1ÞN̂n
2ðkÞ � gkðtn�1; tnþ1ÞN̂n�1

2

� �
; ð69Þ
where
gkðt1; t2Þ ¼ exp � a�
Pe
jkj4

Z t2

t1

dt0

�s4
aðt0Þ

� �
: ð70Þ
We also use the trapezoidal rule to approximate
R t2

t1

dt0

�s4
aðt0 Þ

as in Eqs. (58) and (59). The first time step u1 is obtained using a
first-order linear propagator method.
5. Summary

In this section, we summarize the governing equations and numerical procedure. For the fluid, the equations are:
r � Pi ¼ 0; r � ui ¼ 0; ð71Þ

P � n½ �R ¼
dEb

dRn �KLLj

 !
nþ KLL

s � us
dEM

du

 !
s; ð72Þ

u½ �R ¼ 0; ð73Þ
u! u1 in the far-field; ð74Þ
where Pi ¼ �piIþ mðrui þruT
i Þ and i = 1, 2 denotes the interior and exterior fluids. The function u is the concentration of

one of the lipid phases, and KLL(a, t) is the Lagrange multiplier (tension) that enforces inextensibility ((u � s)s + ju � n = 0
on the membrane R). The surface phase evolves according to
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ut ¼
1
Pe

dEM

du

 !
ss

; ð75Þ
where Pe is a dimensionless parameter, and the tangent angle h to the interface evolves by
ht ¼ �Vs þ jT; ð76Þ
where V and T are the normal and tangential velocities given by
V ¼ uðXða; tÞ; tÞ � n; ð77Þ
T ¼ uðXða; tÞ; tÞ � s: ð78Þ
The arclength variation sa evolves according to
@tsa ¼ Ts þ jVð Þsa: ð79Þ
Even though Ts + jV � 0 by inextensibility, we still solve this equation to provide an assessment of the actual arclength var-
iation during the evolution.

The outline of the nonstiff numerical algorithm used to solve the system is as follows:

1. For a given location of the membrane R(tn) at time t = tn, use the iterative linear solver GMRES with the preconditioner
described earlier to solve the Stokes equations to obtain un, the inextensible velocity field.

2. Update the membrane tangent angle hn+1, the arclength variation snþ1
a and the concentration un+1 using the nonstiff time

stepping algorithm outlined previously.
3. Reconstruct the new interface positions (x(a, tn+1), y(a, tn+1)) from snþ1

a ; hnþ1 and a reference point (x0(t), y0(t)).
4. Goto step 1 and repeat.

6. Numerical results

In this section, we validate the numerical algorithm and investigate the influence of the line tension, bending coefficient,
spontaneous curvature and external flow on two-dimensional membrane dynamics. We also vary the relative ratio of the
surface lipid phase components. Unless otherwise specified, we use the following parameter and initial configuration set-
ting: a = 100, spontaneous curvature �jðuÞ ¼ 5ð1� uÞ þ 0:1u and bending stiffness b(u) = (1 � u) + 0.5u. Also, we use a double
well potential function f(u) = 0.25u2(1 � u)2. The initial condition is an ellipse given by:
xða;0Þ ¼ cosðaÞ;
yða; 0Þ ¼ 0:3 sinðaÞ;

ð80Þ
where (0 6 a < 2p). With this initial condition, the reduced surface area D = L/R � 2p = 1.7244. The initial concentration u is
assumed to be a mixture of both phases:
uða;0Þ ¼ �uþ d cosðaÞ þ cosð3aÞ þ cosð4aÞð Þ; ð81Þ
where the average concentration �u is varied between 0 and 1 to account for different ratios of the surface phases and the
perturbation parameter d = 0.001.

6.1. Comparison with an explicit method

We demonstrate the effectiveness of our proposed semi-implicit method by comparing with a second-order accurate, ex-
plicit Adams–Bashforth (AB2) method used for all the equations. We consider the evolution from an unstable 50-50 mixture
of the two lipid phases by taking �u ¼ 0:5 with dimensionless parameters � = 0.1 and Pe = 1. In Fig. 1, we present the Fourier

transform jr̂ðk; TÞj of the radius rða; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xða; TÞ2 þ yða; TÞ2

q
using different time steps and mesh sizes for the two ap-

proaches (semi-implicit method, AB2). Only the even Fourier modes are shown at a final time T.
Using AB2 with N = 256 and Dt = 1 � 10�10, the simulation is only able to compute up to T = 2.6 � 10�8. Around this time,

there is significant and rapid growth of the high wavenumber amplitudes which then destabilize the simulation. See Fig. 1(a)
(dashed). If the time step is reduced by a factor of two to Dt = 0.5 � 10�10 (solid), simulation may run significantly longer indi-
cating this is just below the critical stability threshold for the time step. In Fig. 1(b) the same simulation is performed using our
semi-implicit, nonstiff algorithm. In contrast, a much larger time step may be used (Dt = 1.0 � 10�4 (solid)) and the simulation
may proceed indefinitely without losing stability (the time T = 4 � 10�3 is shown). As seen in the figure the high wavenumbers
do not grow and that the solution is insensitive to the time step; the dashed corresponds to Dt = 0.5 � 10�4.

In Fig. 1(c), results are presented for AB2 using N = 512. In this case, the time step needs to be reduced by about a factor of
10 from that used with N = 256, which is consistent with the third-order time step constraint predicted by the small scale
analysis. In the figure, the dashed curve corresponds to Dt = 1 � 10�11. Observe there is significant growth of high wavenum-
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Fig. 1. Comparison of the Fourier spectra jr̂ðk; TÞj for an explicit Adams–Bashforth method (a and c) and our semi-implicit non-stiff algorithm (b and d) for N
grid points, time step Dt and final time T as indicated.
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bers at T = 5.8 � 10�10 which destabilizes the simulation. Using a time step Dt = 0.5 � 10�11, the simulation may be run sig-
nificantly longer. In contrast, performing the same simulation with our nonstiff algorithm [Fig. 1(d)] indicates that we can
actually use the same time step for both N = 256 and N = 512 without loss of stability. At worst, we may have to reduce the
time step by a factor of two for each factor of two decrease in the mesh size. Thus, it is clear that the use of AB2 is not prac-
tical and AB2 is significantly outperformed by our semi-implicit nonstiff method.

6.2. Convergence test

We test the numerical accuracy of our scheme by considering the evolution from an unstable 50–50 mixture of the two
lipid phases by taking �u ¼ 0:5 with varying Pe and �. Consider first the resolution in time. Using N = 512 grid points, we per-
Table 1
Convergence rate at time t = 0.02 for a 50–50 mixture of lipid phases with �u ¼ 0:5, N = 512 grid points with Pe = 1 and varying � (0.2, 0.1 and 0.05).

Dt � = 0.2 � = 0.1 � = 0.05

Error Convergence rate Error Convergence rate Error Convergence rate

8e�5 1.9345e�5 1.1259 3.6904e�6 – 2.4682e�5 1.6260
4e�5 7.0962e�6 1.4468 2.6481e�6 0.4788 7.1922e�6 1.7789
2e�5 2.2470e�6 1.6591 1.0381e�6 1.3510 1.8303e�6 1.9744
1e�5 3.2575e�7 1.6721 6.4334e�7 1.8043 4.5053e�7 2.0224
5e�6 1.7285e�7 1.8960 9.1656e�8 1.8295 1.1392e�7 1.9836
2.5e�6 4.4780e�8 1.9486 2.4311e�8 1.9146 2.9119e�8 1.9680
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Fig. 2. Multicomponent vesicle evolution with a 50–50 mixture of lipid phases: �u ¼ 0:5. (a) The evolution of the total energy EM. Insets: vesicle
morphologies and surface phase concentration u at indicated times (color online: blue and red correspond to the u = 0 and u = 1 phases, respectively). (b)
The energy components: the line energy ET and the bending energy Eb. (c) The normal velocity.
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form simulations using time steps Dt = 4 � 10�5, 2 � 10�5, 1 � 10�5, 5 � 10�6 and 2.5 � 10�6. The error in local arclength is
maxa jsa(a, t) � sa(a,0)j � 10�8 in all cases. We study convergence of the area enclosed by the interface, which is more sen-
sitive to the discretization, by comparing the area at time t = 0.02 with its initial value. The area is calculated by
AðtÞ ¼ 1=2

R 2p
0 xða0; tÞ � nða0; tÞsa0da0 where the integration is performed using the discrete Fourier transform. The results

are shown in Table 1 where the convergence rate is estimated from the errors corresponding to the results using two con-
secutive time step sizes. This confirms that the scheme is second-order accurate in time.

We note that the scheme is stable and still quite accurate using much larger time steps. However, as seen from Table 1,
the convergence rate deteriorates as the time step increases although the actual errors are small. The use of a higher order
accurate time stepping algorithm could be helpful in this regard (e.g. see [33]). This is currently under study. We thus chose
to use a small time step to ensure the temporal errors are very small and that we are in the second-order convergence re-
gime. We also investigated the rate of convergence with different choices of the Peclet number Pe = 1/� and Pe = � (results not
shown). Second-order convergence is also observed although the use of smaller values of � require a smaller time step when
Pe = � for stability. This is not surprising since the initial phase decomposition occurs more rapidly when � decreases with
Pe = � compared to that when Pe = 1.
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Fig. 3. Multicomponent vesicle evolution with a 50–50 mixture of lipid phases: �u ¼ 0:5 with fixed � = 0.1 and varying Pe = � (dash), 1 (dash dot) and 1/�
(solid). (a) The surface phase concentration u at indicated times. (b) The energy components: the line energy ET and the bending energy Eb.
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To test the effect of spatial resolution, we fixed the time step Dt = 2 � 10�5 and varied the spatial grid size using
N = 256,512 and 1024. In each case, the area is preserved to more than 6 digits, indicating that the error is limited by the
time step. The membrane positions for these resolutions are virtually indistinguishable.
6.3. Effect of varying average concentration

Next, we continue the evolution described in Section 6.2 and study the surface phase separation of a vesicle containing a
50-50 mixture of lipid phases (�u ¼ 0:5) for Pe = 1 and � = 0.1. We use the time step Dt = 2 � 10�5 and N = 512 grid points. The
results are shown in Fig. 2(a)–(c). In (a), the total energy EM is shown together with insets of the corresponding vesicle mor-
phologies and surface concentration u at the times indicated (color online: blue and red correspond to u = 0 and u = 1 phases,
respectively). At early times phase separation rapidly occurs yielding two large regions of the u � 1 at the vesicle top and
bottom where the curvature is smallest and the u � 0 phase is confined to the vesicle tips where the curvature is larger. This
is consistent with the desired spontaneous curvature �jðuÞ. Correspondingly, there is a large drop in the total energy EM and
as seen in (b) both energy components ET and Eb also decrease rapidly. At later times (t > 0.04), the upper and lower regions
of the vesicle become negatively curved and the vesicle tends to a discocyte (or dumbbell) shape. The u = 1 phase remains
confined to the negatively curved neck region. During this phase of the evolution, EM, ET and Eb all decrease slowly and the
system tends to a steady state.

The corresponding normal velocities are shown in Fig. 2(c). At early times the largest (in the magnitude) velocities occur
near the vesicle tips and tend to round off the tip. Away from the tip, the negative normal velocities create the negatively
curved regions. Since the velocity tends to zero, this confirms that the evolution tends to a steady state. In this simulation,
the area is preserved to six digits and the maximum error in local arclength (as defined above) is 6 � 10�8.
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Fig. 4. Multicomponent vesicle evolution with a 70–30 mixture of lipid phases: �u ¼ 0:7 with � = 0.1 and Pe = 1. (a) The evolution of the total energy EM.
Insets: vesicle morphologies and surface phase concentration u at indicated times (color online: blue and red correspond to the u = 0 and u = 1 phases,
respectively). (b) The energy components: the line energy ET and the bending energy Eb. (c) The normal velocity. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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To see how the dynamics is affected by the Peclet number, we perform the same simulation as in Fig. 2 except using
Pe = 1/� and Pe = �. The results are shown in Fig. 3(a) for the concentration and (b) for the energies. As seen from the figure,
the initial stages of phase separation occur at different rates, depending on the Peclet number. Once the phases separate, the
evolution of the different cases is similar.

Now we fix the dimensionless parameters to be the following: � = 0.1 and Pe = 1. In Fig. 4 we consider a 70–30 mixture of
lipid phases by taking �u ¼ 0:7. As in the 50–50 case, the u � 1 and u � 0 phases initially separate at the top/bottom and tip
regions of the vesicle, respectively. The energies EM, ET and Eb correspondingly decrease rapidly. Note that the concentration
u is still quite far from 0 at the vesicle tips at t = 0.012, however. Because of asymmetries in the initial concentration, the
concentration at the right tip is slightly larger than that at the left. This drives the u = 0 phase to the left tip as a way to fur-
ther reduce the line energy ET. While this reduces ET, and ultimately EM, the bending energy Eb increases because it is more
energetically favorable to have the u = 1 phase located in regions where the curvature is small rather than having the con-
figuration shown where the u = 1 phase is located at the large curvature right tip. The line energy ET decreases dramatically
because the four phase interface points on the membrane are reduced to two by this process. At later times, negative cur-
vature regions form and the membrane tends an asymmetric discocyte shape. The shape, surprisingly, has the u = 1 phase
located at the larger curvature tip. This is in contrast to the desired spontaneous curvature (e.g. �jð1Þ ¼ 0:1 and �jð0Þ ¼ 5)
and is what drives the rapid increase in Eb. This configuration is a result of the limited amount of the u = 1 phase. For exam-
ple, having a lower curvature tip requires more of the u = 1 phase. The normal velocity, shown in Fig. 4(c), indicates that the
evolution still has not quite reached a steady state even though the energy variation is very small at late times. In this sim-
ulation (Dt = 2 � 10�5, N = 512), the area is preserved to six digits of accuracy and the maximum error in local arclength is
8 � 10�6.
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Fig. 5. Multicomponent vesicle evolution with a 80–20 mixture of lipid phases: �u ¼ 0:8 with � = 0.1 and Pe = 1. (a) The evolution of the total energy EM.
Insets: vesicle morphologies and surface phase concentration u at indicated times (color online: blue and red correspond to the u = 0 and u = 1 phases,
respectively). (b) The energy components: the line energy ET and the bending energy Eb. (c) The normal velocity. (For interpretation of the references to
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In Fig. 5, we increase the amount of the u = 1 component and consider a 80–20 mixture by taking �u ¼ 0:8. At early times,
the phases tend to separate more slowly compared to the 50–50 and 70–30 cases. This is because the driving force for phase
separation is lower in this case. In fact, the initial concentration �u lies just outside the spinodal region of f(0.25 6 u 6 0.75)
where negative diffusion (ff00 < 0) occurs. Here, phase separation is driven by the bending energy at early times. As can be
seen from the Fig. 5(b), the early dynamics tend to reduce the bending energy Eb at the expense of a slight increase in
the line energy ET. As the phase separation process continues, the u = 0 phase accumulates at the left tip of the vesicle. This
results in a large drop in ET and EM. The energy Eb slightly increases. The resulting vesicle takes an asymmetric discocyte
shape but now with the larger curved region at the left tip. This is consistent with the desired spontaneous curvature and
occurs because there is now enough u = 1 phase to support a less curved right tip. The normal velocity shown in Fig. 5(c)
shows that the evolution has nearly reached the steady state. In this simulation (Dt = 2 � 10�5, N = 512), the area is pre-
served to six digits of accuracy and the maximum error in local arclength is 5 � 10�7.

When the amount of the u = 1 phase is increased to yield a 85–15 mixture by taking �u ¼ 0:85, the phases rearrange
slightly but as seen in Fig. 6, there is no dramatic phase separation as the vesicle tends toward a discocyte shape. This is be-
cause the initial concentration lies far enough outside the spinodal region of f(0.25 6 u 6 0.75) that no decomposition occurs.
In this simulation (Dt = 2 � 10�5, N = 512), the area is preserved to six digits of accuracy and the maximum error in local arc-
length is 3 � 10�8.

Next, in Fig. 7, we decrease the amount of the u = 1 phase and consider a 30–70 mixture by taking �u ¼ 0:3. As in the pre-
vious cases, phase separation occurs at the vesicle top/bottom and tips, accompanied by a decrease in the energies EM, ET and
Eb. At later times, the vesicle develops negative curvature. Because of the initial asymmetry in u, the concentration in the
lower region is less than that in the upper region of the vesicle. This drives the transport of the u = 1 phase to the upper re-
gion and results in a rapid decrease in ET which overcomes the increase in Eb that is primarily associated with having the
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Fig. 6. Multicomponent vesicle evolution with a 85–15 mixture of lipid phases: �u ¼ 0:85 with � = 0.1 and Pe = 1. (a) The evolution of the total energy EM.
Insets: vesicle morphologies and surface phase concentration u at indicated times (color online: blue and red correspond to the u = 0 and u = 1 phases,
respectively). (b) The energy components: the line energy ET and the bending energy Eb. (c) The normal velocity. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Multicomponent vesicle evolution with a 30–70 mixture of lipid phases: �u ¼ 0:3 with � = 0.1 and Pe = 1. (a) The evolution of the total energy EM.
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respectively). (b) The energy components: the line energy ET and the bending energy Eb. (c) The normal velocity. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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u = 0 phase located in the negatively curved lower region. The vesicle responds later by evolving so that the lower region
becomes convex thereby decreasing the bending energy. The vesicle accordingly tends to an asymmetric (stomatocyte) equi-
librium shape. In this simulation (Dt = 2 � 10�5, N = 512), the area is preserved to 6 digits of accuracy and the maximum er-
ror in local arclength is 1 � 10�6.

In Fig. 8 we repeat the simulation shown in Fig. 7 but with a smaller value of �; we take � = 0.05. Since the initial concen-
tration condition �u ¼ 0:3 is far from equilibrium, using a smaller value of � increases the initial magnitude of the line energy
(via the coefficient a/�) ET and correspondingly the total energy EM. The system responds by rapidly phase separating, with
the u = 1 phase now placed asymmetrically on small curvature regions of the vesicle. Once the phase separation occurs the
u = 1 phases develop negative curvature and the vesicle evolves to a slightly asymmetric discocyte shape. Unlike the previous
case where the u = 1 phase is transported to the top of the vesicle, here the smaller value of � prevents this transport since
decreasing � enhances the immiscibility of the u = 0 and u = 1 phases. Note that if we had considered locally equilibrated
initial conditions (well-defined and separated u = 0 and u = 1 domains) then we would have observed convergence of the
results in �. We have confirmed this (results not shown). Also observe from the normal velocity in Fig. 8(c) that the shape
at t = 15 is still evolving apparently towards a more symmetric shape. In this simulation (Dt = 2 � 10�5, N = 512), the area
is preserved to five digits of accuracy and the maximum error in local arclength is 1 � 10�6.
6.4. The effect of an applied shear flow

We next consider the evolution of a multicomponent vesicle under an applied shear flow. We consider a 30–70 lipid
phase mixture (�u ¼ 0:3). The initial vesicle is defined by
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xða; 0Þ ¼ 0:1 cosðaÞ; ð82Þ
yða;0Þ ¼ sinðaÞ; ð83Þ
where a 2 [0,2p) and the simple shear flow u1 = (25y,0) is used. All other parameters are the same as in the previous
simulations.

With this initial condition, the reduced surface area is D = 6.5682 which is significantly larger than that used in the pre-
vious simulations. Experimentally, there is a critical value D* such that for D 6D* a vesicle will tank-tread in a shear flow
(e.g. reach a steady shape) but for D > D* the vesicle will tumble (e.g. evolve dynamically and the shape will remain unstea-
dy). See [41]. As far as we are aware, the value D* has not been determined for two-dimensional vesicles or multicomponent
vesicles. Numerically, we found that for D = 6.5682 the vesicle tumbles (as seen below) while for D = 1.7244 (initial mem-
brane given in Eq. (80) the vesicle tank-treads). A more precise determination of D* and its dependence on heterogeneity and
t